

MINIMOD: TOOLS FOR IDENTIFYING EFFECTIVE AND COST-EFFECTIVE MICRONUTRIENT INTERVENTIONS

USAID Advancing Nutrition Webinar February 19, 2020 Steve Vosti and the MINIMOD team

MOTIVATION FOR DEVELOPMENT OF MINIMOD TOOLS

Substantial contribution of micronutrient deficiencies to global burden of disease and excess mortality across LMICs

Long-term solution

Adequate diets for all – this will take time and investments

What to do in the short-term?

- Many options exist -- Fortification of staple foods and condiments, biofortification, supplementation, etc.
- We cannot do everything, everywhere, forever
- So, what to choose (and what not to choose) When, where, how and how long to intervene?

What we need to know

- The nature and severity of <u>MN deficiencies</u>
- How <u>effective</u> the alternative intervention programs will be
- How <u>costly</u> these alternative intervention programs will be
- Hence, how <u>cost-effective</u> alternative intervention programs will be
- The most <u>cost-effective</u> national and sub-national <u>portfolio</u> of MN intervention programs

MINIMOD OBJECTIVES AND FRAMEWORK

Primary objective

 Develop and use tools to help design and manage a more cost-effective set of national and sub-national micronutrient intervention programs in LMICs

Framework: 3-part model

- Nutritional needs and intervention program benefits model
- Intervention program cost model
- Economic optimization model

Spatially and temporally explicit

MINIMOD TOOL FRAMEWORK

Dietary Intake Data

↓

Nutrition Needs and Benefits Model with Link to LiST

- Usual dietary intakes and dietary inadequacy estimated from primary or secondary data sources
- Predicts effects of all combinations of candidate interventions on number of individuals with low intake and with intake above the UL
- Lives Saved Tool (LiST) used to predict functional outcomes (lives saved, anemia averted)
- Spatially and temporally explicit

Program Cost Data

Cost Model

- Planning, establishment, and operational costs for all combinations of candidate interventions estimated using "activity-based costing"
- Spatially and temporally explicit

- Finds the most cost-effective set of intervention programs
- Reports summary measures of nutritional benefits
- Reports costs and cost savings vis-à-vis alternative sets of intervention programs

NUTRITIONAL NEEDS AND INTERVENTION BENEFITS MODEL

MEASURES OF SUCCESS/NUTRITION BENEFITS

Reach: number (%) of individuals who receive an intervention

Effective Coverage: number (%) of individuals who are both at risk of deficiency due to inadequate intake and also receive sufficient additional intake from an intervention or multiple interventions to be classified as having sufficient intake

Minimum additional intake (iron and zinc): number (%) of individuals who receive more than a specified amount of additional micronutrient intake from an intervention(s)

Functional outcomes: Lives saved; cases of anemia averted

Excessive intake: number (%) of individuals whose intake would exceed the tolerable upper intake level (UL) due to the intervention(s)

CALCULATING EFFECTIVE COVERAGE: BASIC APPROACH

1. Estimate distribution of **usual*** nutrient intakes at baseline

Estimate % < EAR and % > UL

2. Simulate distribution of **usual*** nutrient intakes under new program scenario(s)

Re-assess % EAR and % > UL

3. Effective Coverage =

% inadequate before – % inadequate after

50% inadequate before – 20% inadequate after

= 30% effective coverage

Shape of the new distribution of intakes will depend on:

- > Baseline nutrient intakes,
- > program reach, and
- > amount of nutrient delivered,

all of which can vary spatially

Daily nutrient intake

*Usual intake distributions estimated using National Cancer Institute (NCI) method. See: http://riskfactor.cancer.gov/diet/usualintakes/

MODEL IS USEFUL IN ESTIMATING THE EFFECTS OF <u>CURRENT</u> AND <u>HYPOTHETICAL</u> PROGRAMS, AND COMBINATIONS OF THEM

PROGRAM BENEFITS DEPEND ON THE DEFINITION OF SUCCESS: PREDICTED EFFECTS OF FORTIFICATION WITH VITAMIN B-12 AMONG CHILDREN IN CAMEROON

Unpublished results: not for circulation or citation

MICRONUTRIENTS AND DELIVERY PLATFORMS

Delivery Platforms	Micronutrients
Periodic high-dose supplements*	Vitamin A
Daily supplementation*	Zinc
Industrial fortification (edible oils, wheat flour, salt, sugar, bouillon cubes)	Vitamin A, Zinc, Iron, Folate, Vitamin B12, Iodine
Biofortification (orange-flesh sweet potatoes, beans {iron}, maize {VA})	Vitamin A
Agronomic Fortification (enriched fertilizers)	Zinc, selenium
Other intervention strategies (LNS, MMP, other)*	Vitamin A, Zinc, Folate, Vitamin B12, Iodine

***Delivery platforms:** Child Health Days, Health Centers (primary care), Community Distribution

All Delivery Models Require Investments and M&E!!

Benefits and Cost-effectiveness Depend on Delivery Model Performance!!

MINIMOD INTERVENTION PROGRAM COST MODEL

COMPONENTS OF THE COST MODEL

Start-up Costs

Planning, legislation change, advocacy, etc.; initial staffing, training, infrastructure, vehicles, etc.

Operational Costs

- Fixed costs Overhead costs, management, etc.
- Variable costs -- costs that increase with the scale of the program

Costs Faced by <u>all</u> Stakeholders

- Public sector costs
- Private Sector costs
- Caregiver/household costs

Marginal/Incremental Costs

- Costs of adding MN intervention programs to existing platforms
- Costs of designing/implementing completely new programs

Calculates Costs for All Intervention Programs and Combinations of Them

National and sub-national predicted nutritional impacts, costs, and cost-effectiveness of selected vitamin A programs over 10 years

		Reach,	Effective	Child Deaths	Total Cost,	Cost per	Cost per	Cost per	
		000s of child-	Coverage, 000s	Averted,	000s US\$	Child	Child-Year	Child Death	
		years	of child-years	# of children		Reached,	Effectively	Averted, US\$	
						US\$	Covered, US\$		
VA-Fortified Edible Oils (44% target)									
	National	17,188	5,075	9,724	\$2,657	\$0.15	\$0.52	\$273	
VA-Fortified Edible Oils (44% to 100% target)									
	National	17,188	8,055	15,527	\$4,851	\$0.28	\$0.60	\$312	
VA-Fortified Bouillon Cubes									
	National	29,039	7,731	16,098	\$2,932	\$0.10	\$0.38	\$182	
VA-Biofortified Maize									
	National	13,435	2,512	5,720	\$1,398	\$0.10	\$0.56	\$244	
VA Supplementation via Child Health Days									
	National	23,649	8,586	19,267	\$26,923	\$1.14	\$3.14	\$1,397	
	North	11,340	5,201	13,630	\$8,766	\$0.77	\$1.69	\$643	
	South	8,918	2,131	3,889	\$12,963	\$1.45	\$6.08	\$3,333	
	Cities	3,391	1,253	1,748	\$5,194	\$1.53	\$4.15	\$2,972	

MEETING VA NEEDS OF YOUNG CHILDREN IN CAMEROON: A CLOSER LOOK AND BENEFITS, COSTS AND COST-EFFECTIVENESS

MINIMOD ECONOMIC OPTIMIZATION MODEL

WHAT THE OPTIMIZATION MODEL DOES

<u>Combines</u> the Results of the Nutrition Benefits and Cost Models

- Nutrition model predicts impacts of specific MN intervention programs, and combinations of them
- Cost model predicts the costs of specific MN intervention programs, and combinations of them

<u>Uses</u> Linear Programming Techniques

Mixed integer programming (General Algebraic Modeling System – GAMS)

<u>Seeks</u> Economically Optimal Combinations to MN Intervention Programs (over space & time)

- Minimum cost of meeting specific program objectives
- Maximum contribution to objectives given funding or other constraints

BUSINESS AS USUAL* IN CAMEROON: VAS FOR CHILDREN

(* Implies the replication over 10 years of programs administered over the past few years.)

	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021
VA Supplementation	SNC									
Fortified Cooking Oil (44%)	SNC									
# of Child-Years Effectively Covered ('000s)	1,110	1,127	1,147	1,166	1,186	1,205	1,224	1,243	1,262	1,281
Total Cost ('000s USD)	\$2,951	\$2,957	\$2,963	\$2,968	\$2,974	\$2,979	\$2,984	\$2,989	\$2,994	\$2,999

S = South Macro-region; N = North Macro-region; C = Cities

		_					
Number of Children				National	North	South	Cities
Effectively Covered	11,951		# of Children			3,213	2,183
('000s)			Effectively Covered	11,951	6,554		
Total Cost ('000s \$)	\$29,758		('000s)				
Cost per Child Effectively	\$ 0.40		Cost per Child	\frown		4	
Covered (\$/child)	\$2.49		Effectively Covered	\$2.49	Ş1.48	Ş4.35	Ş2.71
			(\$/child)				

Vosti et al., 2019

LET'S TRY SOMETHING NEW

Add New MN Intervention Programs

- Develop VA-fortified bouillon cube (267 IU/g target) -- delivered via markets; begins to generate benefits in year 4
- Biofortified maize (delivered via markets; begins to generate benefits in year 4)
- Improve efficiency of oil fortification program over three years (from 44% to 72% to 100% of 40 IU/g target)

Use the Optimization Model

Objective: Achieve the 10-year BAU* effective coverage benefits (~11.9m children) at lowest cost

VAS Programs Assessed at 2009 Reach Levels

Economically Optimal VA Programs for Children, Effective Coverage

		2012	2013	2(4	2015	2016	2017	2018	2019	2020	2021
	VA Supplementation	N	Ν								
-	Fortified Cooking Oil (44%-72%-100%)	SNC [#]	SNC [#]	SNC [#]	SNC						
\Rightarrow	Fortified Bouillon Cube	SNC*	SNC*	SNC*	SNC						
•	VA Bio-Fortified Maize										
	# of Child-Years Effectively Covered ('000s)	998	1,188	873	1,415	1,435	1,455	1,475	1,496	1,516	1,536
	Total Cost ('000s USD)	\$1,472	\$1,478	\$598	\$855	\$855	\$855	\$855	\$855	\$855	\$855

S = South Macro-region; N = North Macro-region; C = Cities

*= zero benefits but some costs; #=increasing benefits thanks to investments

Number of Children Effectively Covered ('000s)	13,386
Total Cost ('000s \$)	\$9,537
Cost per Child Effectively Covered (\$/child)	\$0.71

Vosti et al., 2019

ONGOING AND PLANNED MINIMOD WORK

Ongoing MINIMOD Work

- Cameroon
- Ethiopia
- Haiti

New MINIMOD Work in West Africa

- Senegal
- Nigeria
- Burkina Faso

In All Sites

- MINIMOD teams are formed
- Collaborative research, including data collection/processing and modeling
- Policy engagement
- Capacity strengthening

ACKNOWLEDGMENTS

Esteemed Collaborators

Ethiopian Public Health Institute – EPHI HKI – West Africa Regional Office HKI – Country Offices: Cameroon, Senegal, Burkina Faso, Nigeria Johns Hopkins University – LiST Tool Ministries of Public Health – All Collaborating Countries Ministries of Agriculture – All Collaborating Countries National Cancer Institute – USA UNICEF – All Collaborating Countries UC Davis – Nutrition and IGN

Funding Sources

Michael and Susan Dell Foundation Sight and Life Bill & Melinda Gates Foundation

Reina Engle-Stone Hanqi Luo Justin Kagin Ann Tarini Caitlin French Demewoz Woldegebreal Katie Adams Kenneth H. Brown Stephen A. Vosti

Core Team Members

THANK YOU!

For more information about MINIMOD, visit: https://minimod.ucdavis.edu